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Chapter 5
NUMERICAL METHODS IN HEAT
CONDUCTION



Objectives

Understand the limitations of analytical solutions of
conduction problems, and the need for computation-
Intensive numerical methods

Express derivates as differences, and obtain finite
difference formulations

Solve steady one- or two-dimensional conduction
problems numerically using the finite difference method

Solve transient one- or two-dimensional conduction
problems using the finite difference method
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The analytical solution of a problem
requires solving the governing
differential equation and applying
the boundary conditions.

'Y NUMERICAL METHODS?

In Chapter 2, we solved various heat
conduction problems in various
geometries in a systematic but highly
mathematical manner by

(1) deriving the governing differential
equation by performing an energy
balance on a differential volume
element,

(2) expressing the boundary
conditions in the proper mathematical
form, and

(3) solving the differential equation
and applying the boundary conditions
to determine the integration
constants.



1 Limitations
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Analytical solution methods are
[imited to simplified problems
in simple geometries.

Analytical solution methods are limited to
highly simplified problems in simple
geometries.

The geometry must be such that its entire
surface can be described mathematically
In a coordinate system by setting the
variables equal to constants.

That is, it must fit into a coordinate system
perfectly with nothing sticking out or in.

Even in simple geometries, heat transfer
problems cannot be solved analytically if
the thermal conditions are not sufficiently
simple.

Analytical solutions are limited to problems
that are simple or can be simplified with
reasonable approximations.



2 Better Modeling

When attempting to get an analytical solution
to a physical problem, there is always the
tendency to oversimplify the problem to make
the mathematical model sufficiently simple to
warrant an analytical solution.

Therefore, it is common practice to ignore any
effects that cause mathematical complications
such as nonlinearities in the differential
equation or the boundary conditions
(nonlinearities such as temperature
dependence of thermal conductivity and the
radiation boundary conditions).

A mathematical model intended for a numerical
solution is likely to represent the actual

problem better.

The numerical solution of engineering
problems has now become the norm rather
than the exception even when analytical

solutions are available.

An
oval-shaped
body

Realistic
model

Simplified
model

Exact (analytical)  Approximate (numerical)

solution of model, solution of model,
but crude solution but accurate solution
of actual problem of actual problem

The approximate numerical solution
of a real-world problem may be more
accurate than the exact (analytical)
solution of an oversimplified

model of that problem.



3 Flexibility

Engineering problems often require extensive parametric studies
to understand the influence of some variables on the solution in
order to choose the right set of variables and to answer some
“‘what-if’ questions.

This is an iterative process that is extremely tedious and time-
consuming if done by hand.

Computers and numerical methods are ideally suited for such
calculations, and a wide range of related problems can be solved
by minor modifications in the code or input variables.

Today it is almost unthinkable to perform any significant
optimization studies in engineering without the power and flexibility
of computers and numerical methods.



4 Complications

Some problems can be solved analytically,
but the solution procedure is so complex and
the resulting solution expressions so
complicated that it is not worth all that effort.

With the exception of steady one-dimensional
or transient lumped system problems, all heat
conduction problems result in partial
differential equations.

Solving such equations usually requires
mathematical sophistication beyond that
acquired at the undergraduate level, such as
orthogonality, eigenvalues, Fourier and
Laplace transforms, Bessel and Legendre
functions, and infinite series.

In such cases, the evaluation of the solution,
which often involves double or triple
summations of infinite series at a specified
point, is a challenge in itself.

L
I
I
I
| I
| L
) I

BT, z) |
I
I
I
I
I

-
il -
=
Iy -E_H“‘“-:L
f r
Ty
Analytical solution:
Irz)-T, 2 Jo(d,r) sinh A, (L -2)
To-T. = Adi(Ayry)  sinh (4,1)

where A,’s are roots of Jy(4,r,) =0
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Some analytical solutions are very
complex and difficult to use.



5 Human Nature

FIGURE 5-5

The ready availability of high-powered
computers with sophisticated software
packages has made numerical solution
the norm rather than the exception.

Analytical solutions are necessary
because insight to the physical
phenomena and engineering wisdom
Is gained primarily through analysis.

The “feel” that engineers develop
during the analysis of simple but
fundamental problems serves as an
invaluable tool when interpreting a
huge pile of results obtained from a
computer when solving a complex
problem.

A simple analysis by hand for a
limiting case can be used to check if
the results are in the proper range.

In this chapter, you will learn how to
formulate and solve heat transfer
problems numerically using one or
more approaches.



FINITE DIFFERENCE FORMULATION
OF DIFFERENTIAL EQUATIONS

The numerical methods for solving differential
equations are based on replacing the
differential equations by algebraic equations.

In the case of the popular finite difference
method, this is done by replacing the
derivatives by differences.

Below we demonstrate this with both first- and
second-order derivatives.

AN EXAMPLE
A=Ayl + i)y = ($100)(1 + 0.09)? = $118.81
dA/dr = iA A = Agexp(ir)

A = ($100)exp(0.18 X 1) = $119.72

Reasonably accurate results can be
obtained by replacing differential quantities
by sufficiently small differences

TABLE 5-1

Year-end balance of a $100 account
earning interest at an annual rate

of 18 percent for various
compounding periods

Number
Compounding of Year-End
Period Periods, n Balance
1 year 1 $118.00
6 months 2 118.81
1 month 12 119.56
1 week 52 119.68
1 day 365 119.72
1 hour 8760 119.72
1 minute 525,600 119.72
1 second 31,536,000 119.72
Instantaneous 0 119.72
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The derivative of a function at a point
represents the slope of the function at
that point.

Taylor series expansion of the function f
about the point x,

The smaller the Ax, the smaller
the error, and thus the more
accurate the approximation.
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Consider steady one-dimensional heat conduction in a plane wall of thickness L
with heat generation.
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Plane wall

Differential equation:
o
dx? ! k- !

Valid at every point

Finite difference equation:
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FIGURE 5-8

The differential equation is valid at
every point of a medium, whereas the
finite difference equation is valid at
discrete points (the nodes) only.
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Finite difference mesh for two-
dimensional conduction in
rectangular coordinates.

Finite difference formulation for steady two-
dimensional heat conduction in a region with
heat generation and constant thermal
conductivity in rectangular coordinates
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ONE-DIMENSIONAL STEADY HEAT
CONDUCTION

In this section we develop the finite difference
formulation of heat conduction in a plane wall Plane wall - olume
using the energy balance approach and | of node m
discuss how to solve the resulting equations. . o .
) g q Qcond.left” "chnd.dghl
The energy balance method is based on
.- . . . . A general
subdividing the medium into a sufficient interior node
number of volume elements and then N g L
applying an energy balance on each element. 01 2 m-1|mm+l M x
/Rate of heat|  /Rate of heat|  /Rate of heat| /Rate of change Arx
conduction conduction generation of the energy
at the left at the right inside the content of
surface surface element | the element | FIGURE 5-10
_ The nodal points and volume
Ot Ot - Egeujemm _ AFE, ement _0 g]emenrs‘ for t]}e finitfe diff§1*ellce
At formulation of one-dimensional

AE,.0 =0 conduction in a plane wall.
eleme

i : AT
E — {; U {3 r‘j.l;l:l Qcm]d = ’{A T

gen, element m Y element S
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: Tx -1 T.f : Tm+] _ Tm
and.lci'[ = kA - Ax : QWH‘-L right = kA Ax
T.* -1 T, T, +1 T, .
kA — - =+ kA — e =+ é, AAx = 0
Tyos =20+ Ty _
Ax? k
m=1,2.3...... W — 1

This equation is applicable to each of the
M - 1 interior nodes, and its application
gives M - 1 equations for the determination
of temperatures at M + 1 nodes.

The two additional equations needed to
solve for the M + 1 unknown nodal
temperatures are obtained by applying the
energy balance on the two elements at the
boundaries (unless, of course, the
boundary temperatures are specified).
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A 4
FIGURE 5-11

In finite difference formulation, the
temperature is assumed to vary
linearly between the nodes.

14



éﬁAﬂ.I

T -7, ,-T
k,q] "“ “;;A 2 3

Ax Ax
X L L
] 2 3
- Volume
¥ element
of node 2

T, —T, T, —T
FAZLT T2 b 22708 L AAX =0
Ax Ax =

or
T, — 2T, + Ty + é,AAx? [ k=0

(@) Assuming heat transfer to be out of the
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FIGURE 5-12

Ax Ax
. . . 4
1 2 3
- Volume
¥ element
of node 2

T,-T, T,-T,
L "2 kA =2 4+ 6,AAx =0

kA
Ax Ax

or
Ty — 2T, + Ty + é,AAx? / k=0

(£) Assuming heat transfer to be into the
volume element at all surfaces.

The assumed direction of heat transfer
at surfaces of a volume element has
no effect on the finite difference

formulation.
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Boundary Conditions

Boundary conditions most commonly encountered in practice are the
specified temperature, specified heat flux, convection, and radiation
boundary conditions, and here we develop the finite difference formulations
for them for the case of steady one-dimensional heat conduction in a plane
wall of thickness L as an example.

The node number at the left surface at x = 0 is 0, and at the right surface at
x = L it is M. Note that the width of the volume element for either boundary

node Is AXx/2.
Plane wall
Specified temperature boundary condition e e
1(0) = T, = Specified value N 4
I(L) = T,; = Specified value
FIGURE 5-13 Y S L |
Finite difference formulation of or e .
specified temperature boundary
conditions on both surfaces Ty =35°C
of a plane wall. Ty=82°C
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When other boundary conditions such as the specified heat flux, convection,
radiation, or combined convection and radiation conditions are specified at a
boundary, the finite difference equation for the node at that boundary is obtained
by writing an energy balance on the volume element at that boundary.

Z Q + Egcn.clcnmm =0

All sides

Qleﬂ surface + "LA

.T] _ T

0

Ax

+ é6(AAX2) = 0

The finite difference form of various
boundary conditions at the left boundary:

. Specified Heat Flux Boundary Condition

TI

i f i ,-1I. + kA

Ax

+ &,(AAX/2) = 0

Special case: Insulated Boundary (g, = 0)

Ax

Ty
kA

T

+ &(AAY2) = 0

Qlct’l

Ax
2
€«—» _ Volume element
of node 0
€o
P fey, 7T
surface kA Ax
L
D & & -
0 | 2 X
< A x>l Ax—>
: I-T, . Ax
Qteft surface + kA AXx + E“D.—lT =0
FIGURE 5-14

Schematic for the finite difference
formulation of the left boundary
node of a plane wall.
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2. Convection Boundary Condition

[_Tn

Ax

hA(T, — T,) + kA + é(AAX2) = 0

3. Radiation Boundary Condition

TJ Ttl

Ax

eaA(TE . —TH + kA + éy(AAX2) =0

4. Combined Convection and Radiation Boundary Condition
(Fig. 5-15)

T[_Tn

Ax

hA(T.. — Tp) + s0A(TS, — Tg) + kA + €3(AAx/2) = 0

or

T[_Tn

Ax

Rcombinea A(To — Ty) + kA + e(AAX/2) = 0
5. Combined Convection, Radiation, and Heat Flux Boundary
Condition

TJ Tu

Ax

GoA + hA(T.. — Ty) + ecA(Td, — T3 + kA + ¢5(AAX/2) = 0



6. Interface Boundary Condition Two different solid media A and B are
assumed to be in perfect contact, and thus at the same temperature at the
interface at node m (Fig. 5-16). Subscripts A and B indicate properties
of media A and B, respectively.

m—1 T;.': T:.':+J o TH.' . .
:'!..AJI Ax + ;'!..R,Jl T + (”A_}”{Ai\}'fz ) + cp J,”{Aih'fz ) =0 (5-29)
FIGURE 5-15
. - - Interface
Schematic for the finite difference v
formulation of combined convection R, Gt P
and radiation on the left boundary ka o kg
of a plane wall.
Tm—l B Tm Tm+1 B Tm
ol WA ko d
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“ 1~ 1o .. — ;
kA=~ the finite e Ax > Ax —>]
difference ,» o
hA(T,. — Ty) . A TAax A
’ N . . L formulation of SE\SE
0 1 2 - X the interface
A7 Ax >l Ax > boundary kot ZIm oy T = T
4 A +Rp .
. Ax Ax
condition for two o~ o~
. | mediums A and +éomA—S +égnA— =0
hA(T,, - To) + e0A(T &y — TH) B that are in
T -T, )
iz to, %A:x_x _0 perfect thermal 19
Ax - contact.



Treating Insulated Boundary Nodes as Interior Nodes:

The Mirror Image Concept

T.rn+l o sz + Tm—] i €m

Ax? k
Insulati Insulated
nsulation e
node
l/; & -
01 2 X
Mirror
Mirror Equivalent
image interior
node
- » » n/: . >
* 2 1 (01 2 X
FIGURE 5-17

A node on an insulated boundary
can be treated as an interior node by
replacing the insulation by a mirror.

I —2T,+1, ¢

Ax? k

The mirror image approach can also be
used for problems that possess thermal
symmetry by replacing the plane of
symmetry by a mirror.

Alternately, we can replace the plane of
symmetry by insulation and consider
only half of the medium in the solution.

The solution in the other half of the
medium is simply the mirror image of the
solution obtained.
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: EXAMPLE 5-1 Steady Heat Conduction in a Large Uranium Plate

: Consider a large uranium plate of thickness L = 4 cm and thermal conductivity
m k= 28 W/m - °C in which heat is generated uniformly at a constant rate of
m 2 = 5 x 10° W/m?. One side of the plate is maintained at 0°C by iced water
m while the other side is subjected to convection to an environment at 7_ = 30°C
® with a heat transfer coefficient of h = 45 Wim< - °C, as shown in Figure 5-18.
®™ Considering a total of three equally spaced nodes in the medium, two at the
* boundaries and one at the middle, estimate the exposed surface temperature of
: the plate under steady conditions using the finite difference approach.

Uranium
plate
[:ﬂ\c\ k=28 Wim-"C h
f =35 x 106 Wim® I
[ * & L -
0 I 7 X
FIGURE 5-18

Schematic for Example 5-1. ”
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2
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FIGURE 5-18

SOLUTION A uranium plate is subjected to specified temperature on one side
and convection on the other. The unknown surface temperature of the plate is
to be determined numerically using three equally spaced nodes.

Assumptions 1 Heat transfer through the wall is steady since there is no in-

dication of any change with time. 2 Heat transfer is one-dimensional since
the plate is large relative to its thickness. 3 Thermal conductivity is constant.

4 Radiation heat transfer is negligible.

Properties The thermal conductivity is given to be k = 28 Wim - "C.

Analysis The number of nodes is specified to be M = 3, and they are chosen
to be at the two surfaces of the plate and the midpoint, as shown in the figure.
Then the nodal spacing Ax becomes

L _004m
M—1 3-1

Ax = = 0.02 m

We number the nodes 0, 1, and 2. The temperature at node O is given to be
T, = 0°C, and the temperatures at nodes 1 and 2 are to be determined. This
problem involves only two unknown nodal temperatures, and thus we need to
have only two eguations to determine them uniguely. These equations are ob-
tained by applying the finite difference method to nodes 1 and 2.

Mode 1 is an interior node, and the finite difference formulation at that node
is obtained directly from Eq. 518 by setting m = 1:

Tu - 2T‘| + T:
Ax®

E1 0 — ETI + Tz E| EH'}'--’[E
+—=0 — +—=0 = 2T -T,=
k Ax? k b k
(1)
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Mode 2 is a boundary node subjected to convection, and the finite difference
formulation at that node is obtained by writing an energy balance on the volume
element of thickness Ax/2 at that boundary by assuming heat transfer to be into
the medium at all sides:

T - T‘I
hA(T, — T,) + kA ‘M = + 8,{AAX2) = 0

Canceling the heat transfer area A and rearranging give

(2)

hAx hAx B Ax
ri (14 280)y, - hhxy, g

Equations (1) and (2) form a system of two equations in two unknowns 7, and
T.. Substituting the given quantities and simplifying gives

2T, — T, = 71.43 (in °C)
T, — 1.032T: = —36.68  (in °C)

This is a system of two algebraic equations in two unknowns and can be solved
easily by the elimination method. Solving the first equation for T; and substi-
tuting into the second equation result in an equation in 1> whose solution is

T, = 136.1"C
This is the temperature of the surface exposed to convection, which is the
desired result. Substitution of this result into the first equation gidss T, =
103.8°C, which is the temperature at the middle of the plate.



B o EXAMPLE 5-2 Heat Transfer from Triangular Fins

Cnns.lcler an aluminum alloy fin (k = 180 W/m - “C) of triangular cross section

W|th length L = 5 ecm, base thickness b = 1 cm, and very large width w in the
- dlrectmn normal to the plane of paper, as shown in Figure 5-20. The base of
m the fin is maintained at a temperature of T; = 200°C. The fin is losing heat
® to the surrounding medium at 7. = 25°C with a heat transfer coefficient of
W h=15Wm?."C. Using the finite difference method with six equally spaced
* nodes along the fin in the x-direction, determine (a) the temperatures at the
g Nodes, (b) the rate of heat transfer from the fin for w = 1 m, and (c) the fin

m efficiency.
|
Ax [L - frr:|+_].ﬁ;r]tan9 /

|
b cos & |
T“W/ <
m—1] m+ 1 —
flk—d._r—-l-—f (m - —]MJ

Triangular fin

kT,

'I___"___

TIII
[L—{m - %r_".ruanﬂ hr“
2 |
FIGURE 5-20 4
Schematic for Example 5-2 and the has 4
volume element of a general — SX

interior node of the fin. —
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SOLUTION A long triangular fin attached to a surface is considered. The nodal
temperatures, the rate of heat transfer, and the fin efficiency are to be deter-
mined numerically using six equally spaced nodes.

Assumptions 1 Heat transfer is steady since there is no indication of any
change with time. 2 The temperature along the fin varies in the x direction only.
3 Thermal conductivity is constant. 4 Radiation heat transfer is negligible.

The thermal conductivity is given to be k = 180 W/m - °C.

Analysis (a) The number of nodes in the fin is specified to be M = &, and their
location is as shown in the figure. Then the nodal spacing Ax becomes

Properties

L _005m
M—1 6—1

Axr = = (.01 m

The temperature at node 0O is given to be T, = 200°C, and the temperatures at
the remaining five nodes are to be determined. Therefore, we nead to have five
equations to determine them uniguely. Modes 1, 2, 3, and 4 are interior nodes,
and the finite difference formulation for a general interior node m is obtained
by applyving an energy balance on the volume element of this node. Moting that
heat transfer is steady and there is no heat generation in the fin and assuming
heat transfer to be into the medium at all sides, the energy balance can be ex-
pressed as

To — Ta Tme1 — T,

M o=0 = KALGL—F— e + ﬁ:.qn.gm—"' + hA__ (T,

—T,)=0
olll xides .'i.l'

Mote that heat transfer areas are different for each node in this case, and using
geometrical relations, they can be expressed as

A = (Height > Width)g,, L= 2wlL — (m — 1/2)Ax]tan 6
Agge = (Height < Width)g,, +1= 2wlL — (m + 1/2)Ax]tan @

Acoaw = 2 % Length > Width = 2w(Axfcos @)

Substituting,

A T — T,

'] xltan & T

T.I:u— 1 Tm: EH-'.&.I:..-
Ax cos B

2wl — (m —

+ Zhkw[l — (m + E'jﬁ.x]l,a.n 0

m— Tg) =0




FIGURE 5-21
Schematic of the volume element of
node 5 at the tip of a triangular fin.

Dividing each term by 2kwl tan 6/Ax gives

[1 — (m —{F}%]ﬁ*m L — T+ [I — (m +.}1%](Tm e — T
hiAx)? r o Ty—0
kLsing =" =) =

Mote that

B2 _ 0.5 cm

— — 1 — = o
T s cm 0.1 — B tan—'0.1 5.71

tan & =
Also, sim 5.71° = 0.0995. Then the substitution of known guantities gives
(5.5 — )T — 1 — (10.D0838 — 2m) T, + (4.5 — )T+ 1 — —0.2009

Mow substituting 1, 2, 3, and &4 for m results in these finite difference equa-
tions for the interior nodes:

m = 1: —R.00838T,; + 3.57:; = —900.209 ()
m = 2: 3.57, — 6.008387, + 2.57, = —0.209 2)
m o= 3: 2.57, — 4008387, + 1.57, = —0.209 (@)
m = 4: 1.5T, — 2008387, + 0.5T; = —0.209 (4)

The finite difference equation for the boundary node & is obtained by writing an
energy balance on the volume element of length Ax’2 at that boundary, again by
assuming heat transfer to be into the medium at all sides (Fig. 5-21):

Ta— T
Mlcﬂ aﬁ_r - + "H-:Dnr (Ti'r - Tﬁ} =0

where

- tan & and A = 2w -
2 e cos 6

Aypg = 2w

Canceling w in all terms and substituting the known guantities gives

T, — 1.LOOB38T; = —0.209 5)

Equations (1) through (5) form a linear system of five algebraic equations in five
unknowns. Solving them simultaneously using an eguation solver gives

T, = 198.6"C, T, = 197.1°C, T = 195.7°C,

T, = 194.3°C, T = 1929°C

which is the desired solution for the nodal temperatures.

{5) The total rate of heat transfer from the fin is simply the sum of the heat
transfer from each volume element to the ambient, and for w = 1 m it is deter-
mined from
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FIGURE 5-21
Schematic of the volume element of
node 5 at the tip of a triangular fin.

5 5
Qﬂn = 2 Q-:I:rn:nL.m = E 'ﬂﬂa:lm.m:-?-m - T:.-}
i =] =0

Moting that the heat transfer surface area is wAx/cos @ for the boundary nodes
0 and 5, and twice as large for the interior nodes 1, 2, 3, and 4, we have

'Ql:ﬁ.n =h :‘:;i-; [‘.TI:I - T:r} + EI.rTl - T_-_] + HTE — iy + Z{Tl - T._.r]
+ NTy — Tw) + (T5 — Tl
wAx
_ ) (1 myi0.01 m)
= (15 Wim-* - °C) ———[200 + 2 X 785.7 + 192.9 — 10 x 25]
cos 5.71
= 258.4W

(c) If the entire fin were at the base temperature of T, = 200°C, the total rate
of heat transfer from the fin for w = 1 m would be

Qe = AAgy o (Th — T,) = h(2wLicos 0T, — T,,)
= {15 W/m? - “C)[2(1 m){0.05 m)/cos5.71°](200 — 25)°C
= 263.8W

Then the fin efficiency is determined from

O 2584W

M = Qm - 1638 W = (.98

which is less than 1, as expected. We could also determine the fin efficiency in
this case from the proper fin efficiency curve in Chapter 3, which is based on
the analytical solution. We would read 0.98 for the fin efficiency, which is iden-
tical to the value determined above numerically.
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The finite difference formulation of
steady heat conduction problems
usually results in a system of N
algebraic equations in N unknown
nodal temperatures that need to be
solved simultaneously.

There are numerous systematic
approaches available in the literature,
and they are broadly classified as
direct and iterative methods.

The direct methods are based on a
fixed number of well-defined steps that
result in the solution in a systematic
manner.

The iterative methods are based on an
initial guess for the solution that is
refined by iteration until a specified
convergence criterion is satisfied.

Direct methods:

series of well-defined steps.

\ [terative methods:

|\ Start with an initial guess for the solution,

and iterate until solution converges.

FIGURE 5-22

Two general categories of solution
methods for solving systems of
algebraic equations.
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One of the simplest iterative methods is the Gauss-Seidel iteration.

TABLE 5-2

Application of the Gauss-Seidel iterative method to the finite difference
equations of Example 5-2.

Finite difference equations in explicit form
7, =0.43717, + 112.4137

I, =0.58267, + 0.4161T5; + 0.0348

I3 =0.62387, + 0.3743T, + 0.0521

T, =0.74707; + 0.2490T; + 0.1041

s =0.99217, + 0.2073

Nodal Temperature, °C

Iteration
I IF IE Ty Ts
Initial Guess 195.0 195.0 195.0 195.0 195.0
1 197.6 196.3 195.5 194.7 193.4
2 198.2 196.9 195.8 194.5 193.2
3 198.5 197.2 195.9 194.5 193.2
4 198.6 197.3 195.9 194.5 193.2
5 198.7 197.3 195.9 194.5 193.2
6 198.7 197.3 195.9 194.5 193.2
/ 198.7 197.3 195.9 194.5 193.2




TWO-DIMENSIONAL STEADY HEAT

CONDUCTION

Vi
.'F"I"-
n+ 1 Ay 'Nucle (m.,n)
Tt Ay
n—1 '
7
| Ax Ax
0 — x
01 2 tm x
m—-—1 m+1
FIGURE 5-23

The nodal network for the finite
difference formulation of two-
dimensional conduction in
rectangular coordinates.

Sometimes we need to consider heat transfer
In other directions as well when the variation
of temperature in other directions is
significant.

We consider the numerical formulation and
solution of two-dimensional steady heat
conduction in rectangular coordinates using
the finite difference method.
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Rate of heat
generation inside
the element

'Rate of heat conduction
at the left, top, right,

the energy content
and bottom surfaces
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The volume element of a general
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( node
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[ dimensional conduction in
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& =0

node k rectangular coordinates.
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Boundary Nodes

The region is partitioned between the
nodes by forming volume elements
around the nodes, and an energy
balance is written for each boundary
node.

An energy balance on a volume
element is

E Q T i::lVf-;-Jcrn-;-m =0

All sides

We assume, for convenience in
formulation, all heat transfer to be into the
volume element from all surfaces except
for specified heat flux, whose direction is
already specified.

Boundary
Volume element subjected
of node 2 W T to convection
\ top \
1
1 -. 3 v
T & | % I &
Ay Qlﬂﬁ L _ —_ Qrigh[
l antmm
4
€« Ax—>»
. . . . f;g IU'IE
Qlep + Qmp + Qrighl + Opottom + r - 0

FIGURE 5-25

The finite difference formulation of
a boundary node is obtained by
writing an energy balance

on its volume element.
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: EXAMPLE 5-3 Steady Two-Dimensional Heat Conduction

- in L-Bars

||
m Consider steady heat transfer in an L-shaped solid body whose cross section is

m given in Figure 5-26. Heat transfer in the direction normal to the plane of the
®m paper is negligible, and thus heat transfer in the body is two-dimensional. The
™ thermal conductivity of the body is k= 15 W/m - °C, and heat is generated in
n = the body at a rate of g = 2 x 10® W/m?>. The left surface of the body is insu-

*® lated, and the bottom surface is maintained at a uniform temperature of 90°C.

= 1he entire top surface is subjected to convection to ambient air at T, = 25°C
m with a convection coefficient of h = 80 W/m? - °C, and the right surface is sub-

W jected to heat flux at a uniform rate of g5 = 5000 W/m®. The nodal network of
™ the problem consists of 15 equally spaced nodes with Ax = Ay = 1.2 cm, as

® shown in the figure. Five of the nodes are at the bottom surface, and thus their
® temperatures are known. Obtain the finite difference equations at the remain-

@ Mg nine nodes and determine the nodal temperatures by solving them.

Convection

¥ h, T,

-I I -2 "'l/r:}
1 | | Ax=Ay=1|
Ay b—+-t—+-1 ' g

| = |
'J| L i 4+ i -ﬁ : .? : IE : 9‘- -
Ay - b-4-——t-—+—p—+-T—+-4— FIGURE 5-26
t B10; Q11 -Iz'lr JA31 14,1570 Schematic for Example 5-3 and
90°C " the nodal network (the boundaries
Atk Arab Azl Arl Ar of volume elements of the nodes are
o 4 4 A4 b= indicated by dashed lines).




(@) Node 1 () Node 2
FIGURE 5-27

Schematics for energy balances on the
volume elements of nodes 1 and 2.

h, T

!

(@) Node |

SOLUTION Heat transfer in a long L-shaped solid bar with specified boundary
conditions is considered. The nine unknown nodal temperatures are to be de-
termined with the finite difference method.

Assumptions 1 Heat transfer is steady and two-dimensional, as stated. 2 Ther-
mal conductivity is constant. 3 Heat generation is uniform. 4 Radiation heat
transfer is negligible.

Properties The thermal conductivity is given to be k = 15 W/m - °C.

Analysis We observe that all nodes are boundary nodes except node 5, which
is an interior node. Therefore, we will have to rely on energy balances to obtain
the finite difference equations. But first we form the volume elements by parti-
tioning the region among the nodes equitably by drawing dashed lines between
the nodes. If we consider the volume element represented by an interior node
to be full size (i.e., Ax > Ay x 1), then the element represented by a regular
boundary node such as node 2 becomes half size (i.e., Ax x Ay2 = 1), and
a corner node such as node 1 is quarter size (i.e., Ax/2 > Ay2 > 1). Keeping
Eg. 5-36 in mind for the energy balance, the finite difference equations for
each of the nine nodes are obtained as follows:

(a) Node 1. The volume element of this corner node is insulated on the left and
subjected to convection at the top and to conduction at the right and bottom
surfaces. An energy balance on this element gives [Fig. 5-274]

=0

Ay, - T I,—-T Ay
ay &3 |+kg.t Ly ﬂ_rT,

Ax ) at
D+h2{T.x 1'"[,'|+.£2 e 2 Ay g|2

Taking Ax = Ay = [, it simplifies to

hi hi gl*
—(3 +?) hi+h+Ta=—3pTa—5p

i




(b) Node 2. The volume element of this boundary nede is subjected to con-

(B Node 2

- I\ 2 ,/'ﬂ_ﬁ
.-ill‘l-' : Ax=Ay=1
FIGURE 5-27 ol T e 7\ s e

vection at the top and to conduction at the right, bottom, and left surfaces. An
energy balance on this element gives [Fig. 5-27b]

PAMT. — T + k22 2y a3 2 TN 0 0T g
J‘Tl:::ac- 2 7 Ax X _.'1\, 5 Ax E‘- 2_

Taking Ax = Ay = [, it simplifies to

g
T]—(4+%)T1+T3+2T5=—

hl ., Gl
& 0Tk

\ Convection
T~ hT,

(@) Node 3

FIGURE 5-28 |

T
+
l
T T T T
! /: | | | | —
+
I
|

10! |1

=1
¥ X
Q0
e AT s AT e A T o A T e A T

(c) Node 3. The volume element of this corner node is subjected to convection
at the top and right surfaces and to conduction at the bottom and left surfaces.
An energy balance on this element gives [Fig. 5-28al

Ax | AY AxT; — T AyT, — T, AxAy
h(T =4 T)I:T,, — T +k 5 i + k K3 Ax + g5 E 0

Taking Ax = Ay = [, it simplifies to

2hi 2hl gsl?
i 2%

T;—[E+T)T_1+TE=——TI——




(d) Neode 4. This node is on the insulated boundary and can be treated as an

. interior node by replacing the insulation by a mirror. This puts a reflected image
Mirmor of node 5 to the left of node 4. Noting that Ax = Ay = [, the general interior
\ node relation for the steady two-dimensional case (Eq. 5-35) gives [Fig. 5-28b]
] .
_ | _ gyl -
|:'|.:| 4. | :". T‘-+T|+T5+T|U_4T1+T=D
————— % I ]
|
I or, noting that T, = 90° C,
A
12
Tl_4T4+2T5= _gD_giT
e [0 \
Convection
\ . nr
(b) Node 4 L)
e i FIGURE 5-28 NERER Ax=ty=1
INJ4 ! |s! s 7 g8 9 I
P=aEREDERRE -
s /]/m: i izt 13! hi4his—
= ] ] ;
90°C
/ e AT s AT e A T o A T e A T
7T "7
I I (e) Mode 5. This is an interior node, and noting that Ax = Ay = [, the finite
4 ! 3 : 6 difference formulation of this node is obtained directly from Eq. 5-35 to be
"__I__"' ; . [Fig. 5-29al
| |
2
LA T_1_+T1+T6+T|_[_4T5+Ek =)
el or, noting that T;; = 90°C,
| 3 T+T—4T+T——'§'ﬂ—g5—f:
(ah Node 5 FIGURE 5-29 2T 5T He T i




(a) Node 7.

Convection
v h, T—'
- 1 2 ,/ﬁ_a
(B} Node 6 1 ! ! / Ax=Ay=1
FIGURE 5-29 Ay L 4 —
i PR N AR,
1
Ay -_4__5,',44-_4__-4__._
| 10} —T11] 12} 13} 14]15
¥ x
] 90°C
/ i o Ax Ax A AT ]
h T &

FIGURE 5-30

(f) Node 6. The volume element of this inner corner node is subjected to con-

vection at the L-shaped exposed surface and to conduction at other surfaces
An energy balance on this element gives [Fig. 5-29b]

Ax 11 ) ."_‘l T — T T —Te
-+ = + k= +

f![ 3 3 (T.—Tg) + k Ax kAx B
4':‘..1 T1 - TE\ 313.[3_\-
— + —

Ax kR TRy tE&T

+ kAy s

Taking Ax = Ay = [ and noting that T;; = 90°C, it simplifies to

34,12
T, + 2T — (a+2f’)rﬁ+r_-,= —180 — g 2%

k 2k

(g) Node 7. The volume element of this boundary node is subjected to convec-

tion at the top and to conduction at the right, bottom, and left surfaces. An en-
ergy balance on this element gives [Fig. 5-30a]

hAx(T, — T+ k2 =11 p Tu T
T — )+ k55 Ay
kﬂTTEi_TT Ay

T 5I + E?ﬁxT - D

aa

Taking Ax = Ay = [ and noting that Ty3 = 90°C, it simplifies to

Tﬁ—(4+%)rﬂ,+n=—1an—%n—%




{h) Node 8. This node is identical to Node 7, and the finite difference formu-

lation of this node can be obtained from that of Node 7 by shifting the node
numbers by 1 (i.e., replacing subscript m by m + 1). It gives

El
r?—(4+¥)rﬂ+rg=—1an—%n—%

Convection
h, T,

I T S

f
&

b

h, T h, T,
2 73 B 7 ot 0
| / MAx= &}y% & T T & I .
st s 7 8 9 4x ﬂ _I'h'”l_ — g
AN B S S - I —
11} 12} 13} 14]15
] X 13 15
90°C

Ax— FIGURE 5-30

(i) Node 9. The volume element of this corner node is subjected to convection
at the top surface, to heat flux at the right surface, and to conduction at the
bottom and left surfaces. An energy balance on this element gives [Fig. 5-305b]
Ax Ay Ax Is — Ty AyT; — Tq
h=5 (1. —To) + qp5+ k5 Ay LIy

-

Ax Ay
G770
Taking Ax = Ay = [ and noting that T;; = 90°C, it simplifies to

! 2
Tg—(2+%)?‘g=—9ﬂ—q—?—ﬂ?}—g@

| ko kT




This completes the development of finite difference formulation for this prob-
lem. Substituting the given quantities, the system of nine equations for the
determination of nine unknown nodal temperatures becomes

2.064T, + T, + Ty = —11.2
T, —4.128T, + Ty + 2Ts = —22.4
T, — 21287, + T, = —12.8

T, — 4T, + 2T = —100.2

T+ Ty — 4T + T, = —109.2

Ty + 2Ts — 6.128T; + Ty = —212.0

T, — 4.128T, + Ty = —202.4

T, — 41287, + T, = —202.4

Ty — 2.064T, = —105.2

which is a system of nine algebraic equations with nine unknowns. Using an
equation solver, its solution is determined to be

T, = 112.1°C T, = 110.8°C T3 = 106.6°C

T,=1094°C T, =108.1°C T, = 103.2°C
T,= 97.3°C  Ty= 963°C T,= 97.6°C

Mote that the temperature is the highest at node 1 and the lowest at node 8.
This is consistent with our expectations since node 1 is the farthest away from
the bottom surface, which is maintained at 90°C and has one side insulated,

and node 8 has the largest exposed area relative to its volume while being close
to the surface at S0°C.




Irregular Boundaries

Many geometries encountered in practice
such as turbine blades or engine blocks do
not have simple shapes, and it is difficult to
fill such geometries having irregular
boundaries with simple volume elements.

Actual boundary

e Approximation

A practical way of dealing with such
. + s ..\ . geometries is to replace the irregular
geometry by a series of simple volume

\ elements.
L . . . .

This simple approach is often satisfactory
for practical purposes, especially when the

¢ ¢ ¢ ° * nodes are closely spaced near the
FIGURE 5-31 boundary.
Approximating an irregular boundary More sophisticated approaches are

with a rectangular mesh. available for handling irregular boundaries,

and they are commonly incorporated into
the commercial software packages.
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™ EXAMPLE 5-4  Heat Loss through Chimneys

: Hot combustion gases of a furnace are flowing through a square chimney made
g of concrete (k = 1.4 W/m - °C). The flow section of the chimney is 20 cm X
m 20 cm, and the thickness of the wall is 20 cm. The average temperature of the

: hot gases in the chimney is T, = 300°C, and the average convection heat trans-
m fer coefficient inside the chimney is &y = 70 W/m? - °C. The chimney is losing
m heat from its outer surface to the ambient air at T, = 20°C by convection with
® 3 heat transfer coefficient of b, = 21 W/m? - °C and to the sky by radiation. The
™ emissivity of the outer surface of the wall is & = 0.9, and the effective sky tem-
: perature is estimated to be 260 K. Using the finite difference method with
m Ax = Ay = 10 cm and taking full advantage of symmetry, determine the
m temperatures at the nodal points of a cross section and the rate of heat loss for

m a 1-m-long section of the chimney.
Symmetry lines
(Equivalent to insulation)

——— T
T

f|1 T]
1 2
34N Schematic of the chimney discussed in
Example 5—4 and the nodal network
by i 7 for a representative section.

[ Representative

T, section of chimney

FIGURE 5-32




SOLUTION Heat transfer through a square chimney is considered. The nodal
temperatures and the rate of heat loss per unit length are to be determined with
the finite difference method.

Assumptions 1 Heat transfer is steady since there is no indication of change
with time. 2 Heat transfer through the chimney is two-dimensional since the
height of the chimney is large relative to its cross section, and thus heat con-
duction through the chimney in the axial direction is negligible. It is tempting
to simplify the problem further by considering heat transfer in each wall to be
one-dimensional, which would be the case if the walls were thin and thus the
corner effects were negligible. This assumption cannot be justified in this case
since the walls are very thick and the corner sections constitute a considerable
portion of the chimney structure. 3 Thermal conductivity is constant.

Properties The properties of chimney are given to be k= 1.4 W/m - °C and
e=0.9.

Analysis The cross section of the chimney is given in Figure 5-32. The most
striking aspect of this problem is the apparent symmetry about the horizontal
and vertical lines passing through the midpoint of the chimney as well as the
diagonal axes, as indicated on the figure. Therefore, we nead to consider only
one-eighth of the geometry in the solution whose nodal network consists of nine
equally spaced nodes.

Mo heat can cross a symmetry line, and thus symmetry lines can be treated
as insulated surfaces and thus “mirrors” in the finite difference formulation.
Then the nodes in the middle of the symmetry lines can be treated as interior
nodes by using mirror images. Six of the nodes are boundary nodes, so we will
have to write energy balances to obtain their finite difference formulations. First
we partition the region among the nodes equitably by drawing dashed lines be-
tween the nodes through the middle. Then the region around a node surrounded
by the boundary or the dashed lines represents the volume element of the node.
Considering a unit depth and using the energy balance approach for the bound-
ary nodes (again assuming all heat transfer into the volume element for conve-
nience) and the formula for the interior nodes, the finite difference equations
for the nine nodes are determined as follows:




(ay MNode 1

(a) Node 1. On the inner boundary, subjected to convection, Figure 5-33a

AvT, — T| Ax T:Il — T|
— 4+ k=R +0=
2 Ax . 2 Ay 0=0

n+nj%m—:ﬁ;+k

Taking Ax = Ay = [, it simplifies to
hl

h]_f i

Symmetry lines
{Equivalent to insulation)
—— —?T"-—--._

(i) Node 2

1 2
3 4 5
6 . |7 8 9

" Representative
section of chimney
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(b) Node 2. On the inner boundary, subjected to convection, Figure 5-33b

J':'L}' T] - T1
k_

Ax

+ h

Ay

T,

Ax 2_ 0

7

T,
(T, — Ty) + 0 + kAx

Taking Ax = Ay = [, it simplifies to

Bl
T, —[3 +;)T3+2T¢= - T,

hl
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(c) Nodes 3, 4, and 5. (Interior nodes, Fig. 5-34)
Nﬂdc?ﬂ T_1_+T|_+T_1_+TE_—1-T';=G
Noded: T, + T, + T+ T, —4T, =0
Node 5: T_1_+T_1_+TH+TE_—1-T|5='}
(d) Node 6. (On the outer boundary, subjected to convection and radiation)
T, — T AyT; - T
Ax 6. ¢ ¥ 1 &

Lo "“T Ay "”T Ax
+hf’; T6}+£u—me—T.qJ—[l'

Taking Ax = Ay = [, it simplifies to
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—_— T . | (Equivalent to insulation)
Imagss e ——
| 55 o
(4] 3
—_————
.i‘\ m T,
image — 1 N2
6
- | EnlBCEANE
1 L}
Mirror Mirror 6, 17 s \]o
FIE Ll HE 5_34 by Ty \ Representative
T,. section of chimney




—— ——
e

Symmetry lines
(Equivalent to insulation)
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FIGURE 5-35

() Node 7. (On the outer boundary, subjected to convection and radiation,
Fig. 5-35)

ﬂ"l- Tﬁ T L EA T T‘r+ 11}' TH_T'.’
2 Ax g Ay 2 Ax

+ hAXT, — Ty) + e6Ax(T4, — TH) = 0

Taking Ax = Ay = [, it simplifies to

) 2h I 2h, 1
o, + T, — [ o ) T + Iy E-E!{I.Ir

k =7 L7 T

(f) Node 8. Same as Node 7, except shift the node numbers up by 1 (replace
4 byb 6by 7,7 by8, and 8 by 9 in the last relation)

i [ 2h, 1
2]"_.-\+T7—[ o )TE+T.;.=— o T — E-El‘.l.lrl.rL Tg‘;i}

k k

(g) Mode 9. (On the outer boundary, subjected to convection and radiation,
Fig. 5-35)

AyT; — T, _.5 ¥
— +0+ —Ty) + eo == =
k 5 3 0+ h,— ET Ty) zu (Tsi 0




Taking Ax = Ay = [, it simplifies to

iy 1 h,l
Ty — (1 +kL) Ty=——4T, —%"qr,iy — T8

This problem involves radiation, which requires the use of absolute tempera-
ture, and thus all temperatures should be expressed in Kelvin. Alternately, we
could use °C for all temperatures provided that the four temperatures in the ra-
diation terms are expressed in the form (T + 273)% Substituting the given
quantities, the system of nine equations for the determination of nine unknown
nodal temperatures in a form suitable for use with the Gauss-5eidel iteration
method becomes

Ty = (T2 + Tz + 2865)/7

Ty = (T} + 2Ty + 2865)/8

Ti=(T)+ 2Ty + Tehd

Ty=(Ta+ T + Ts + Ty)/4

Ts = (2T, + 2T

Te = (T2 + Ts + 456.2 — 0.3645 x 107° TAW3.5
Ti=(2Ty + Te + Tz + 912.4 — 0.729 % 10~* TH/7
Ta=(2Ts + T7 + To + 9124 — 0.729 % 10~° TH/7
To = (Tx + 456.2 — 0.3645 x 10~ T§)I2.5

which is a system of nonlinear equations. Using an equation solver, its solution
is determined to be

Ty =545TK =2726°C T,=5292K=256.1"C T;=4252K =152.1°C
i=4112K=1380°C T;=362.1K= B9.0°C T,=3329K= 59.7°C
T,=3281K= 549°C T;=3131K= 399°C T,=265K= 234°C




The variation of temperature in the chimney is shown in Figure 5-36.
Mote that the temperatures are highest at the inner wall (but less than
300°C) and lowest at the outer wall (but more that 260 K), as expected.

The average temperature at the outer surface of the chimney weighed by the
surface area is

(0.5T; + T7 + Tz + 0.5Tq)
(05+1+1+0.5)

Tl.mll. ot =

_ 05X 3329 + 3281 + 313.1 + 0.5 X 296.5

3 = 318.6K

Then the rate of heat loss through the 1-m-long section of the chimney can be
determined approximately from

chil‘l.'l:l‘lfj' = hy Ay (Tyany om — T) + 204, {T#all. ont Tsiy}
= (21 W/m? - K)[4 > (0.6 m)}(1 m)](318.6 — 203)K

+ 0.9(5.67 x 10~ W/m? - K*)
[4 > (0.6 m)(1 m)](318.6 K)* — (260 K)*]

1291 + 702 = 1993 W

We could also determine the heat transfer by finding the average temperature of
the inner wall, which is (272.6 + 256.1)/2 = 264.4°C, and applying Newton's
law of cooling at that surface:

Qcﬁmmy = hj' "11' ET: - Tl.m]l. in/
= (70 Wim? - K)[4 > (0.2 m)(1 m)](300 — 264.4)°C = 1994 W

The difference between the two results is due to the approximate nature of the
numerical analysis.

Temperature, °C

23 40 35 (1] 35 400 23
B 152 B
40w . . . . . p 400
138 256 273 256 138
559 . o . b 55

559 . o . b 55
138 256 273 256 138
400 . . . . . p 40
Bo 138 152 138 Bo
3 40 55 60 55 40 23

FIGURE 5-36

The variation of temperature
in the chimney.




TRANSIENT HEAT CONDUCTION

The finite difference solution of transient FA

problems requires discretization in time in

addition to discretization in space. Lot (Tt | Tith
i+ 1= * * *

This is done by selecting a suitable time step }gr Ti |Ti T

At and solving for the unknown nodal ' 1t

temperatures repeatedly for each At until the
solution at the desired time is obtained.

In transient problems, the superscript i is used L NA7

as the index or counter of time steps, with i =0 0 J—""i e L
corresponding to the specified initial condition. 0 1 m—1 m m+1

FIGURE 5-37

Finite difference formulation of time-
dependent problems involves discrete

| Heat transferred into | [ Heat generated | | The change in the \
the volume element within the energy content of
from all of its surfaces volume element the volume element

during At during Af during Af
points 1n tume as well as Space.
At X D O+ At XE = AE
- zen, element element / — . - . A
All sides AEelement o '”“'ﬂ"j‘T — P 1l/e]-semem (-;J‘—\T-

AE AT

. L zlement . .

() - ET, Jament — - —_ 'U=1 arp O ) —|— — »
E & gen, element At PVelement Cp At E e, Eg{'n. element P Uc]cmcm ( p

All sides All sides

Tf.:.‘+l o T-'.:I
At
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Explicit method: If temperatures at the previous
time step i is used.

Implicit method: If temperatures at the new time
stepi + 1 is used.

If expressed at i + 1: Implicit method

i+1 i
Tm - Tm

E Q + Egen, element At

All sides

=p I""”c]cmcmc}sl

If expressed at i: Explicit method

FIGURE 5-39

The formulation of explicit and
implicit methods differs at the time

step (previous or new) at which the E O + E,p ctoment =
) . oern, eleme

heat transfer and heat generation terms All sides
are expressed.

Explicit method: > 0+ L

gen, element
All sides

Implicit method: D 0+ E emen

All sides

— f-:] Uclecmcnt C

Volume element
(can be any shape)

P = density

V = volume

]
Node m

PV = mass

¢, = specific heat

AT = temperature change

AU = pVe AT = pVey(T = Ty)

FIGURE 5-38

The change in the energy content of
the volume element of a node during a
time interval Af.
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Transient Heat Conduction in a Plane Wall

A Plane wall :

\ Em _— Volume
element

of node m

Tl'+1

T,

-7} -7
a Tt =T Py 4yl

Ax Ax

Ax Ax

m—1 mim+1 M X

aﬂ x-n.

FIGURE 540

The nodal points and volume elements
for the transient finite difference
formulation of one-dimensional
conduction in a plane wall.
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; =T Ay Ax TET' T4
hA(T., — Tj) + kA Ax + éh A 5= pA 5 Cp A7
'_.,!' A .2
Tit! = (I — 27 — 27 hAt)Tﬂ+ TP 2 MYy G0
k k| ko k
No heat generation and 7= 0.5 %
i+1 — A Tz+1 T
{E:’i_'_ - (T 1 T m+l]"/fJI ‘f‘\ ﬁ?xfp At
The temperature of an interior node at RA(T — T ¢
the new time step is simply t_he average '”; N
of the temperatures of its neighboring Ax
nodes at the previous time step.
SN
0 1 2 ... L x
FIGURE 541

Schematic for the explicit finite

difference formulation of the
convection condition at the left
boundary of a plane wall.

51



Stability Criterion for Explicit Method: Limitation on At

The explicit method is easy to use, but it suffers
from an undesirable feature that severely restricts
its utility: the explicit method is not unconditionally
stable, and the largest permissible value of the time
step At is limited by the stability criterion.

If the time step At is not sufficiently small, the
solutions obtained by the explicit method may
oscillate wildly and diverge from the actual solution.

To avoid such divergent oscillations in nodal
temperatures, the value of At must be maintained
below a certain upper limit established by the
stability criterion.

Explicit formulation:
i+1 _ i
Tit'=aT{ + -

II+|. _ |'I
Tm - ame TSR

|'I+ ] — |'I
Ty =ayTy+ -
Stability criterion:

a,=>0,m=0,1,2,...m. ... M

FIGURE 542

The stability criterion of the explicit
method requires all primary
coefficients to be positive or zero.

o _adr_ 1 |""inl=.;.-|'im' nodes, one-dimensional heat )
AT 2 transfer in rectangular coordinates |
1 A2 (0.01 m)? < .
At == - =111 s=1.85min Example
2 & 2(0.45 X 107 m?¥s) P
hAx I
| — 27 — 271 = () or T=

k 2(1 + hAx/k)
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Tr;.:-l_l = T{T:;I:—l + T:;I:+]} + (1 — zT}Trfr

20°C

— L *— — I -
m— 1 m m+ 1 m— 1 m m+ 1

Time step: ¢ Time step: i + 1

FIGURE 543

The violation of the stability criterion
in the explicit method may result in
the violation of the second law

of thermodynamics and thus
divergence of solution.

The implicit method is
unconditionally stable, and thus we
can use any time step we please
with that method (of course, the
smaller the time step, the better the
accuracy of the solution).

The disadvantage of the implicit
method is that it results in a set of
equations that must be solved
simultaneously for each time step.

Both methods are used in practice.
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: EXAMPLE 5-5  Transient Heat Conduction in a Large Uranium
= Plate

: Consider a large uranium plate of thickness [ = 4 cm, thermal conductivity k =
m 28 Wim - °C, and thermal diffusivity « = 12.5 x 10-% m&/s that is initially at
® 3 yniform temperature of 200°C. Heat is generated uniformly in the plate at a
W constant rate of g = 5 x 105 Wim3. At time t = 0, one side of the plate is
™ brought into contact with iced water and is maintained at 0°C at all times, while
the other side is subjected to convection to an environment at 7, = 30°C with
a heat transfer coefficient of h = 45 Wim? - °C, as shown in Figure 5-44. Con-
sidering a total of three equally spaced nodes in the medium, two at the bound-
aries and one at the middle, estimate the exposed surface temperature of the
plate 2.5 min after the start of cooling using (a) the explicit method and (b) the
implicit method.

Uranium plate

0°C k = 28 Wim-"C
=35 10°Wim® 7
2 =125% 107" m%/s

ﬂ‘I ar ﬂ‘I | r-’
( = +
0 | 2 X
Tini.i.n] = 2007C
FIGURE 544

Schematic for Example 5-5.



SOLUTION We have solved this problem in Example 5-1 for the steady case,
and here we repeat it for the transient case to demonstrate the application of
the transient finite difference methods. Again we assume one-dimensional heat
transfer in rectangular coordinates and constant thermal conductivity. The num-
ber of nodes is specified to be M = 3, and they are chosen to be at the two sur-
faces of the plate and at the middle, as shown in the figure. Then the nodal
spacing Ax becomes

L _004m

Ar=4r— 1= 3

= 0.02 m

We number the nodes as 0, 1, and 2. The temperature at node O is given to be
T, = 0°C at all times, and the temperatures at nodes 1 and 2 are to be deter-
mined. This problem involves only two unknown nodal temperatures, and thus
we need to have only two eguations to determine them uniguely. These equa-
tions are obtained by applying the finite difference methed to nodes 1 and 2.

{a) Node 1 is an interior node, and the explicit finite difference formulation at
that node is obtained directly from Eq. 547 by setting m = 1:

g’
k

I l'=mT+TH+(1 20T+ (1)

Mode 2 is a boundary node subjected to convection, and the finite difference
formulation at that node is obtained by writing an energy balance on the volume

element of thickness Ax'2 at that boundary by assuming heat transfer to be into
the medium at all sides (Fig. 5-45):

—T{ . Ax Ax T —T4
Ay TEAT PTG

hA(T. — TH + kA

A
Volume element -..\\ g.} .-"'JI
of node 2

Ti_T!
ko L2 _
Ax RA(T,,,— T?)

i+l
i
!

0

FIGURE 5-45

Schematic for the explicit

finite difference formulation of the
convection condition at the right
boundary of a plane wall.




Dividing by kA/2Ax and using the definitions of thermal diffusivity « = k/pC and
the dimensicnless mesh Fourier number + = aAHAX)® gives

2hAx . BAY T T
(T~ TH+2ATI-TH+7 T
which can be solved for T,*! to give
T4+ —(I—ET—ET%)T{-I-T{ETL-I-?M%L-I-E—) (2)

MNote that we did not use the superscript 7 for quantities that do not change with
time. Mext we need to determine the upper limit of the time step Af from the
stability criterion, which requires the coefficient of T{ in Equation 1 and the co-
efficient of T in the second equation to be greater than or equal to zero. The
coefficient of T{ is smaller in this case, and thus the stability criterion for this
problem can be expressed as

AAx | Ax?
— —_ e — = = =0
I=2r—2rm=0 = 7S50 aon =20+ hdab

since + = aAtlAX)2. Substituting the given quantities, the maximum allowable
value of the time step is determined to be

(0.02 m)>
= 3125 % 10 8 m¥s)[1 + (45 W/m?® - “C)(0.02 m)/28 W/m - °C]

= 155 s

Therefore, any time step less than 15.5 s can be used to solve this problem. For
convenience, let us choose the time step to be At = 15 s. Then the mesh

Fourier number becomes

aAr (125 % 107 m¥s)(15 s)
(AxP (0.02 m)?

T= = 046875 (for Af = 15 s)




TABLE 5-2

The variation of the noda
temperatures in Example 5-5 with

time obtained by the explicit

method
Node
Time Time, Temperature, °C
Step, i 5 T E
0 0 200.0 200.0
1 15 139.7 2284
2 30 149.3 1728
3 45 1238 1799
4 60 125.6 156.3
5 75 114.6 157.1
[ ao 114.3 146.9
7 105 109.5 146.3
g 120 1089 141.8
g 135 106.7 141.1
10 150 106.3 139.0
20 300 103.8 136.1
30 450 103.7 136.0
40 &00 103.7 136.0

Substituting this value of T and other given guantities, the explicit finite differ-
ence equations (1) and (2) developed here reduce to

T = 0.0625T7 + 0.46875T4 + 33.482

T4 = 0937577 + 0.032366T4 + 34.386

The initial temperature of the medium at t = O and i = 0 is given to be 200°C
throughout, and thus 7§ = T2 = 200°C. Then the nodal temperatures at T{

and T} at t = At = 15 s are determined from these equations to be
T! = 0.0625T¢ + 0.4687577 + 33.482
= 0.0625 X 200 + 0.46875 X 200 + 33482 = 139.7°C
T} = 093757 + 0.032366T7 + 34.386
= 0.9375 X 200 + 0.032366 X 200 + 34386 = 22B.4°C

Similarly, the nodal temperatures 77 and 77 at t = 2At = 2 = 15 = 30 s are
determined to be

T = 0.0625T + 0.46875T7 + 33.482

= 0.0625 X 139.7 + 0.46875 x 228.4 + 33,482 = 149.3°C
= 0.9375T + 0.032366T;] + 34.386

= 0.9375 ¥ 139.7 + 0.032366 X 2284 + 34.386 = 172.8°C

T.

L P

Continuing in the same manner, the temperatures at nodes 1 and 2 are de-

termined fori= 1,2, 3, 4,5, ..., 50 and are given in Table 5-2. Therefore,
the temperature at the exposed boundary surface 2.5 min after the start of

cooling is

TASmin = TJ0 = 139.0°C




(b) Node 1 is an interior node, and the implicit finite difference formulation at
that node is obtained directly from Eqg. 5-49 by setting m = 1:

gy Ax®

k

Te— (1 + 20T + T 4+ 1 +Ti=0 (3)

Mode 2 is a boundary node subjected to convection, and the implicit finite dif-
ference formulation at that node can be obtained from this formulation by ex-
pressing the left side of the equation at time step i + 1 instead of i as

- ) . . -13_1_1 Tﬂ:-r.-.l _Tl-
_hf.xl:_rx_T'_!H.I}-I-E{TI_ELL_T'_'HI.J_FE-E._ = = = 2

which can be rearranged as

. ) i Ax?
QT — (1 +2or+ 27@] Titl 4o M0Xy | B2

. . T tTi=0 @

Again we did not use the superscript i or i + 1 for quantities that do not change
with time. The implicit method imposes no limit on the time step, and thus we
can choose any value we want. However, we will again choose At = 15 s, and
thus + = 0.46875, to make a comparison with part {a) possible. Substituting
this value of + and other given quantities, the two implicit finite difference
equations developed here reduce to

—1.9375T*! + 046875T§*" + Ti + 33482 =0

0.9375Ti+!' — 1.9676Ti*1 + Ti + 34386 =0
Again TP = T2 = 200°C at t = 0 and i = 0 because of the initial condition,
and for i = 0, these two equations reduce to

—1.9375T} + 0.46875T} + 200 + 33.482 =0
0.9375T7 — 1.9676T + 200 + 34386 = 0

The unknown nodal temperatures T and T} at t = At = 155 are determined by
solving these two equations simultaneously to be

T! = 168.8°C and T} = 199.6°C




TABLE 5-3

The variation of the nodal
temperatures in Example 5-5 with

nfie

time obtained by the i

3
TENICTT

method
Node
Time Time, Temperature, °C
Step, i 5 T! T
0 0 2000 200.0
1 15 1688 1006
2 30 1505 1906
3 45 1386 1804
4 60 1303 1712
5 75 1241 1636
b 90 1195 1576
7 105 1159 152.8
8 120 1132 1490
g 135 1110 146.1
10 150 1094 1439
20 00 1042 1367
30 450 1038 1361
40 600 1038 136.1

Similarly, for i = 1, these eguations reduce to

—1.9375T7 + 0.46875TF + 168.8 + 33482 =0
0.9375T7 — 1.9676TF + 199.6 + 34386 = 0

The unknown nodal temperatures 77 and Tf at t = At = 2 % 15 = 30 s are
determined by solving these two eguations simultaneously to be

T = 150.5°C and T# = 190.6°C

Continuing in this manner, the temperatures at nodes 1 and 2 are determined
fori=2,3, 4,5, ...,40 and are listed in Table 5-3, and the temperature
at the exposed boundary surface (node 2) 2.5 min after the start of cooling is
obtained to be

TS ™" = T3° = 143.9°C

which is close to the result obtained by the explicit method. Note that either
method could be used to obtain satisfactory results to transient problems, ex-
cept, perhaps, for the first few time steps. The implicit method is preferred
when it is desirable to use large time steps, and the explicit method is preferred
when one wishes to avoid the simultaneous solution of a system of algebraic
equations.




FIGURE 5-46
Schematic of a Trombe wall
(Example 5-6).

TABLE 5-4

The hourly variation of monthly
average ambient temperature and
gsolar heat flux incident on a vertica
surface for January in Reno, Mevada

Time Ambient Solar
of Temperature, Radiation,
Day °F Btu/h - ft*

7 am=10 am 33 114
10 am-1 Pua 43 242
1 P-4 Pt 45 178
4 -7 P a7 0
7 Pa=10 pPm 32 0
10 Ppm-1 am 27 ]
1 am—4 am 26 0
4 pm—7 am 25 0

EXAMPLE 5-6 Solar Energy Storage in Trombe Walls

Dark painted thick masonry walls called Trombe walls are commonly used on
south sides of passive solar homes to absorb solar energy, store it during the
day, and release it to the house during the night (Fig. 5-46). The idea was pro-
posed by E. L. Morse of Massachusetts in 1881 and is named after Professor
Felix Trombe of France, who used it extensively in his designs in the 1970s.
Usually a single or double layer of glazing is placed outside the wall and trans-
mits most of the solar energy while blocking heat losses from the exposed sur-
face of the wall to the outside. Also, air vents are commonly installed at the
bottom and top of the Trombe walls so that the house air enters the parallel flow
channel between the Trombe wall and the glazing, rises as it is heated, and en-
ters the room through the top vent.

Consider a house in Reno, Nevada, whose south wall consists of a 1-ft-thick
Trombe wall whose thermal conductivity is & = 0.40 Btu/h - ft - °F and whose
thermal diffusivity is @ = 4.78 x 107® ft%/s. The variation of the ambient tem-
perature T, and the solar heat flux g, incident on a south-facing vertical sur-
face throughout the day for a typical day in January is given in Table 5-4 in 3-h
intervals. The Trombe wall has single glazing with an absorptivity-transmissivity
product of « = 0.77 (that is, /7 percent of the solar energy incident is ab-
sorbed by the exposed surface of the Trombe wall), and the average combined
heat transfer coefficient for heat loss from the Trombe wall to the ambient is de-
termined to be h,; = 0.7 Btu'h - ft? . °F. The interior of the house is maintained
at T, = 70°F at all times, and the heat transfer coefficient at the interior sur-
face of the Trombe wall is h, = 1.8 Btu/h - ft* - °F. Also, the vents on the
Trombe wall are kept closed, and thus the only heat transfer between the air in
the house and the Trombe wall is through the interior surface of the wall. As-
suming the temperature of the Trombe wall to vary linsarly between JO°F at the
interior surface and 30°F at the exterior surface at 7 am and using the explicit
finite difference method with a uniform nodal spacing of Ax = 0.2 ft, determine

™ the temperature distribution along the thickness of the Trombe wall after 12,

24, 36, and 48 h. Also, determine the net amount of heat transferred to the
house from the Trombe wall during the first day and the second day. Assume the

m wall is 10 ft high and 25 ft long.
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FIGURE 5-47
The nodal network for the Trombe
wall discussed in Example 5-6.

SOLUTION The passive solar heating of a house through a Trombe wall is con-
sidered. The temperature distribution in the wall in 12-h intervals and the
amount of heat transfer during the first and second days are to be determined.
Assumptions 1 Heat transfer is one-dimensional since the exposed surface of
the wall is large relative to its thickness. 2 Thermal conductivity is constant.
3 The heat transfer coefficients are constant.

Properties The wall properties are given to be k = 0.40 Btuw'h - ft - °F, a =
4.78 x 10-5 ft¥fs, and « = 0.77.

Analysis The nodal spacing is given to be Ax = 0.2 ft, and thus the total num-
ber of nodes along the Trombe wall is

M=—+1=—"+1=6

We number the nodes as 0, 1, 2, 3, 4, and 5, with node O on the interior sur-
face of the Trombe wall and node 5 on the exterior surface, as shown in Figure
5-47. Nodes 1 through 4 are interior nodes, and the explicit finite difference
formulations of these nodes are obtained directly from Eq. 5-47 to be

Nodel (m=1):  Ti*'=o(Ti+ T+ (1 — 20T} (1)
Node2 (m=2):  Tit!'=ao(Ti+ T+ (1 — 20)Ti (2)
Node3(m=3): Tit'=aTi+TH+ (1 — 20T (3)
Noded (m=4):  Tit'=o(Ti+ TH+ (1 — 20T} (4)

The interior surface is subjected to convection, and thus the explicit formula-
tion of node O can be obtained directly from Eg. 5-51 to be

b, Ax
k

Ax\y :
To+ 2717 + 27 Tin

e I—E'r—}r;i
k

Substituting the quantities h,, Ax, k, and T, which do not change with time,
into this equation gives

Ti+1 = (1 — 3.807) T} + 12T} + 126.0) (5)




The exterior surface of the Trombe wall is subjected to convection as well as to
heat flux. The explicit finite difference formulation at that boundary is obtained
by writing an energy balance on the volume element represented by node 5,

Ti—Ti Ax . Titl — i
q:|ul."-rh:"'-||_E - SF] + |l'r"d"qlmll:l.r Ax = P"J' T (5-53)
which simplifies to
) h,, Ax ) h,, Ax Kl Ax
Tg”=(|—21—1«r ;{ )n 2¢Ti + 27 ;{ Ti, + q‘“‘”T (5-54)

where 1 = aAt/Ax® is the dimensionless mesh Fourier number. Note that we
kept the superscript i for quantities that vary with time. Substituting the quan-
tities hut, Ax, k, and k, which do not change with time, into this equation gives

1= (1 — 2.707) Td + 1(2T + 0.707T}

i+ 077065 ) (6]
where the unit of gl is Btu/h - ft2.

Next we need to determine the upper limit of the time step At from the sta-
bility criterion since we are using the explicit method. This requires the iden-
tification of the smallest primary coefficient in the system. We know that the
boundary nodes are more restrictive than the interior nodes, and thus we exam-
ine the formulations of the boundary nodes O and 5 only. The smallest and thus
the most restrictive primary coefficient in this case is the coefficient of T in the
formulation of node O since 1 — 3.8; < 1 — 2.7+, and thus the stability cri-
terion for this problem can be expressed as

1

— 3. = =
| 380r=0 —= 7 3.80

E

Substituting the given quantities, the maximum allowable value of the time step
is determined to be

Ax? (0.2 fi)?
At < _ — 2202
3800 3.80 % (4.78 % 10-5 fi2/s) :




Therefore, any time step less than 2202 s can be used to solve this problem.
For convenience, let us choose the time step to be At = 900s = 15 min. Then
the mesh Fourier number becomes

_oAr (478 > 1070 fi¥/5)(900 s)
(Ax)* (0.2 ft)?

T = (.10755 (for At = 15 min)

Initially (at 7 am or t = 0), the temperature of the wall is said to vary lin=arly be-
tween 7O°F at node O and 30°F at node 5. Noting that there are five nodal
spacings of equal length, the temperature change between two neighboring
nodes is (70 — 30)°F/& = 8°F. Therefore, the initial nodal temperatures are

TP = 70°F, T{=62°F. TP = 54°F,
TP = 46°F, TP=38°F, TP = 30°F

Then the nodal temperatures at t = At = 15 min (at 7:15 am) are determined
from these equations to be
T} = (1 — 3.807) T + 12T + 126.0)
= (1 — 3.80 x 0.10755) 70 + 0.10755(2 x 62 + 126.0) = 68.3° F
=2 +TH+(1-20T7
= 0.10755(70 + 54) + (1 — 2 = 0.10755)62 = 62°F
T!=1(Tl+ T+ (1 —21) TP
= 0.10755(62 + 46) + (1 — 2 = 0.10755)534 = 54°F
Ti=7(T?+TH+(1 —-20)TF
= 0.10755(54 + 38) + (1 — 2 X 0.1075546 = 46°F
T =1(TP+TH +(1 —20) TP
= 0.10755(46 + 30) + (1 — 2 = 0.10755)38 = 38°F
Td = (1 — 2.707) T? + 1(2T¢ + 0.70T2, + 0.7704",_

= (1 — 2.70 % 0.10755)30 + 0.10755(2 x 38 + 0.70 = 33 + 0.770 x 114)
= 41 4°F
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FIGURE 5-48

The variation of temperatures in
the Trombe wall discussed
in Example 5-6.

Note that the inner surface temperature of the Trombe wall dropped by 1.7°F
and the outer surface temperature rose by 11.4°F during the first time step
while the temperatures at the interior nodes remained the same. This is typical
of transient problems in mediums that involve no heat generation. The nodal
temperatures at the following time steps are determined similarly with the help
of a computer. Note that the data for ambient temperature and the incident
solar radiation change every 3 hours, which corresponds to 12 time steps,
and this must be reflected in the computer program. For example, the value of
Jioe Must be taken to be gl = 75 fori = 1-12, glyy = 242 fori = 13-24,
giue = 178 for i = 25-36, and gL, = 0 for i = 37-96.

The results after 6, 12, 18, 24, 30, 36, 42, and 48 h are given in Table 5-5
and are plotted in Figure 5-48 for the first day. Note that the interior tempera-
ture of the Trombe wall drops in early morning hours, but then rises as the solar
energy absorbed by the exterior surface diffuses through the wall. The exterior
surface temperature of the Trombe wall rises from 30 to 142°F in just & h be-
cause of the solar energy absorbed, but then drops to 53°F by next morning as
a result of heat loss at night. Therefore, it may be worthwhile to cover the outer
surface at night to minimize the heat losses.

TABLE 5-5

The temperatures at the nodes of a Trombe wall at various times

i

Nodal Temperatures, °F

Time
Time Step, i Is IR IE B T, I
0 h (7 am) (0] 700 820 540 460 38.0 30.0
6 h (1 prm) 24 653 6l.7 6l5 69.7 94.1 142.0
12 h (7 Pm) 48 716 742 804 884 g1.7 82.4
18 h (1 am) 72 733 759 774 763 71.2 61.2
24 h (7 am) 96 71.2 719 709 &7.7 61.7 53.0
30 h (1 pm) 120 703 711 743 842 1083 153.2
36 h (7 P} 144 754 8l.1 894 982 101.0 89.7
42 h (1 am) 168 758 807 835 830 77.4 b6.2
A48 h (7 am) 192 730 751 722 66.0 66.0 56.3




The rate of heat transfer from the Trombe wall to the interior of the house dur-
ing each time step is determined from Newton's law using the average temper-
ature at the inner surface of the wall (node 0) as

Q"I.I'mrnbt wall Q-'rl'mmb-: wall At = hm‘quE; - Tml] "l:"r = 'ifln‘:‘[rrl:]; T TI:IJ 11& - ?_in]ﬂ"r

Therefore, the amount of heat transfer during the first time step (i = 1) or
during the first 15-min period is

Q'}'rnmh: wall lif|r.|"4[[.]r|l:;l + TI:II]]E - ?_ln] ;'fU'
= (1.8 Buw/h - fi* - “F)(10 % 25 fiY)[(68.3 + 7002 — 70°F](0.25 h)
= —05.6 Btu

The negative sign indicates that heat is transferred to the Trombe wall from the
air in the house, which represents a heat loss. Then the total heat transfer dur-
ing a specified time period is determined by adding the heat transfer amounts
for each time step as

] I

Oreampe wall = 2y Ofrombe want = 2, Bin AIT + T§'W2 — Tl At (5-55)
i=1 =1

where [ is the total number of time intervals in the specified time period. In this

case [ = 48 for 12 h, 96 for 24 h, and so on. Following the approach described

here using a computer, the amount of heat transfer between the Trombe wall

and the interior of the house is determined to be

Miombe wal = — 17, 048 Biu after 12 h {— 17, 078 Btu during the first 12 h)

Oroenbe wat = — 2483 Btu after 24 h (14, 565 Btu during the second 12 h)
Otroembe wan = 2610 Btu after 36 h (8093 Btu during the third 12 h)
O rombe wa — 34, 400 Btu after 48 h (28, 790 Btu during the fourth 12 h)

Therefore, the house loses 2483 Btu through the Trombe wall the first day as a
result of the low start-up temperature but delivers a total of 36,883 Btu of heat
to the house the second day. It can be shown that the Trombe wall will deliver
even more heat to the house during the third day since it will start the day at a
higher average temperature.




Two-Dimensional Transient Heat Conduction
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The volume element of a general
o J‘- . R ) - .
Titl = 7(Tig + Tip + Tigw + Tiowom) + (1 — 47) Ty, {"i_ interior node (m, n) for two-

dimensional transient conduction
in rectangular coordinates.
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Titd = o(Thy + T + Thy + i) + (1 — d7) Ty, + 7 el EXDICIL
1 left top right bottom ) i node ] k formulation

wode

S e Ty = 5 W o S i _—— s I+] _—
In the case of no heat generationand 7 = 1/4 T . = (Tleft + Tmp 11ght + Tbnumn}/‘l'
Time step i: - o
b e Stability criterion
l-1 ® - = -
’ _alAr _ 1 (interior nodes, two-dimensional heat
' 24 transfer in rectangular coordinates)
20°C T,  40°C
L » ®

Node | m

10°C

Time step 7 + 1:

? FIGURE 5-50

In the case of no heat generation and
T+ | 950C 7 = ;. the temperature of an interior

. ’ . node at the new time step is the
Node | m average of the temperatures of its

neighboring nodes at the previous

time step.
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= EXAMPLE 5-7 Transient Two-Dimensional Heat Conduction
in L-Bars

Consider two-dimensional transient heat transfer in an L-shaped solid body that
is initially at a uniform temperature of 90°C and whose cross section is given
in Figure 5-51. The thermal conductivity and diffusivity of the body are k =
I5Wim - "C and « = 3.2 ® 10-% m?/s, respectively, and heat is generated in
the body at a rate of g = 2 = 108 Wim3. The left surface of the body is insu-
lated, and the bottom surface is maintained at a uniform temperature of 90°C
at all times. At time t = 0, the entire top surface is subjected to convection to
ambient air at 7. = 25°C with a convection coefficient of h = 80 W/m?® - °C,
and the right surface is subjected to heat flux at a uniform rate of g, = 5000
W/m=. The nodal network of the problem consists of 15 equally spaced nodes
with Ax = Ay = 1.2 cm, as shown in the figure. Five of the nodes are at the bot-
a tt}m surface, and thus their temperatures are known. Using the explicit method,

® determine the temperature at the top corner {node 3) of the body after 1, 3, 5

g 10, and 60 min.
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[ i i T | —
Ay r—+———+-"4-+-t+-+—F—+—4—
L (! fnb izt ! 1415 pE—
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¥ I
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FIGURE 5-51

Schematic and nodal network for
Example 5-7.




aanalp

Convection
h, T,
1 23
| | / Ar=Ay=1
-\ —+—] .
4\: il |6 7 E 0 9g
. J( T —
"R WD X RO UV VS S I A
10! 11! 12! 13! 14!15—
b x
0~
e Ay A T A Ax e Ax =
FIGURE 5-51

$4

() Mode | poure 5-52

SOLUTION This is a transient two-dimensional heat transfer problem in rec-
tangular coordinates, and it was solved in Example 5-3 for the steady case.
Therefore, the solution of this transient problem should approach the solution
for the steady case when the time is sufficiently large. The thermal conductiv-
ity and heat generation rate are given to be constants. We cbserve that all nodes
are boundary nodes except node 5, which is an interior node. Therefore, we will
have to rely on energy balances to obtain the finite difference equations. The re-
gion is partitioned among the nodes equitably as shown in the figure, and the
explicit finite difference equations are determined on the basis of the energy
balance for the transient case expressed as

e LY'-T
E O+ Glype = I:'vclcrr:mCT

All sides

The guantities h, T, &, and gg do not change with time, and thus we do not
nead to use the superscript i for them. Also, the energy balance expressions are
simplified using the definitions of thermal diffusivity « = kfpC and the dimen-
sionless mesh Fourier number = = aAHE, where Ax = Ay = [

(a) Mode 1. (Boundary node subjected to convection and insulation, Fig.
5-523)

Ax LAY - AT T
WS (T - T + k5 =+ k5 5

Dividing by &4 and simplifying,

. ; . i |2 Ti+l — T
B —TH+ 2T~ TH+ 2T~ T+ = L

k T

which can be solved for T{*! to give

. Wi\ . i i h gl?
Tf”=(|—47—21T)Tf+17(n=+T;+TL+E)




(b) Node 2. (Boundary node subjected to convection, Fig. 5-525)

L MNT-T Ti-T
hAMT. — T7) + k—- e + kAx e
AyTi—Tf Ay Ay Tit'-Ti
+kT A +g;ﬂ_rT=inr 3 O A

Dividing by k'2, simplifying, and solving for T2*! gives

' . F . 2 i f 2
"=f|—47—27%)T5+Tfrf+T_,:+zrg+‘ff1+§;_ )

T

[T
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{c) Node 3. (Boundary node subjected to convection on two sides, Fig. 5-533)

Ax Ay AxTé—Ti
— 4+ —= +
1[12 i )rr T)+ kG g
Ay Ti — Ti AxAy  AxAyTi'— T
2 Ax 322 P22 A
Dividing by k/4, simplifying, and solving for T:*! gives
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. h, T
— J 2 /ﬁ; e e {d) Node 4. (On the insulated boundary, and can be treated as an interior node,
i't_r -4—J:f—--_—ﬁ:t-- - o 4 Fig. 5-53b). Noting that T, = 90°C, Eq. 5-60 gives
T —
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{e) Node 5. (Interior node, Fig. 5-54a). Noting that T,, = 90°C, Eq. 5-60
gives

. o I
T;'l={|—4ﬂrg+7hf T‘+T,;+9EI+£5T)

(f) Node 6. (Boundary node subjected to convection on two sides, Fig. 5-54b)

Ax ﬁ] AyTi—T; Ti, — T — T
"(TJF (T = T) + kg ==+ k2 ® + kAy 2
Ax T{— T . JAxAyY _ 3AxAy - Tit'— T4

Dividing by 3k/4, simplifying, and solving for 7! gives

hl 3
i+1 — — — A — [
T (J 4t — 4 fu:]Tﬁ

+§Fn+4n+ﬁn+4x9n+4fr-+ﬂﬁ

FIGURE 5-54




{g) Node 7. (Boundary node subjected to convection, Fig. 5-55)

WA(T. — T + k= i— T Tis — i
AyTi—Ti N Ay N m-r:n'” — Ti
+ g7 t——p x—y C————
Ccmuﬂ..ti-::n 2 Ax Ar
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4o 13, 41— (h) Node 8. This node is identical to node 7, and the finite difference formula-
. * tion of this node can be obtained from that of node 7 by shifting the node num-
e Ar—ele A Ao Ax bers by 1 (i.e., replacing subscript m by subscript m + 1). It gives
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This completes the finite difference formulation of the problem. Next we need
to determine the upper limit of the time step At from the stability criterion,
which requires the coefficient of T4 in the 71! expression (the primary coeffi-
cient) to be greater than or equal to zero for all nodes. The smallest primary co-
efficient in the nine equations here is the coefficient of T{ in the expression,
and thus the stability criterion for this problem can be expressed as

hl 1 &
—_— —_ p— L ——— ="
| =dr—drr=0 = =T — MSIa0 + win

since v = wlAt//?. Substituting the given quantities, the maximum allowable
value of the time step is determined to be

A= (0.012 m)* 10.6
= = 1L
4(3.2 % 107 * m¥s)[1 + (B0 Wim? - “C){0.012 m}/(15 W/m - °C)] :

Therefore, any time step less than 10.6 s can be used to solve this problem. For
convenience, let us choose the time step to be At = 10 s. Then the mesh
Fourier number becomes

aAt (3.2 X 10°* m¥s)(10 5)
1z (0.012 m)?

T= = (0.222 (for At = 10 5)

Substituting this value of + and other given quantities, the developed transient
finite difference equations simplify to

Ti+! = 0.0836T] + 0.444(T§ + Tf + 11.2)

Ti*! = 0.0836T] + 0.22(T} + Ti + 2T! + 22.4)
Tit! = 0.0552T{ + 0.444(T% + T{ + 12.8)

Ti*! = 0.1127F + 0.222(T{ + 2T + 109.2)

Tit! = 0.112Tf + 0.222(T§ + T + T + 109.2)




Ti+! = 0.0031T; + 0.074(2Ti + 4Ti + 2Té + 424)
Ti+! = 0.0836TF + 0.222(T} + T + 202.4)

Tit! = 0.0836T§ + 0.222(T{ + Ti + 202.4)

Ti+! = 0.0836T; + 0.444(T{ + 105.2)

Using the specified initial condition as the solution at time ¢ = O (for i = 0),
sweeping through these nine equations will give the solution at intervals of
10 s. The solution at the upper comer node (node 3) is determined to be
100.2, 105.9, 106.5, 106.6, and 106.6°C at 1, 3, 5, 10, and 60 min, re-
spectively. Note that the last three solutions are practically identical to the
solution for the steady case obtained in Example 5-3. This indicates that steady
conditions are reached in the medium after about 5 min.




Interactive SS-T-CONDUCT Software

The SS-T-CONDUCT (Steady State and Transient Heat
Conduction) software was developed by Ghajar and his
co-workers and is available from the online learning
center (www.mhhe.com/cengel) to the instructors and
students.

The software is user-friendly and can be used to solve
many of the one- and two-dimensional heat conduction
problems with uniform energy generation in rectangular
geometries discussed in this chapter.

For transient problems the explicit or the implicit solution
method could be used.
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The software has the following capabilities:

(a)

Full and easy control of key numerical parameters (nodes and grids),
material properties, and boundary conditions and parameters.

(b) The effect of parameter changes on the temperature distribution can

be instantly viewed.

(c) The effect of stability criterion (Fourier number) for the explicit

(d)

method can be explored.

Several different ways of viewing the results on the screen or in print

(output file):

* Temperature results in a tabular form.

* Temperature plots with time and distance for one-dimensional steady
state and transient problems.

e Shaded temperature plots for two-dimensional steady state problems.

* Animation of shaded temperature plots for two-dimensional transient
problems.

A library of material properties (thermal conductivity and thermal

diffusivity) built in the software. With this feature the effect of

material property on the nodal temperatures can be explored.

The current version of the software has the following limitations:

(a)

—

=

L]

Rectangular geometries, expressed in Cartesian coordinates may be
modeled.

Uniform grid spacing.

Boundary conditions for constant temperature, constant heat flux, and
constant convection heat transter coefficient.
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