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Objectives 

• Understand the limitations of analytical solutions of 

conduction problems, and the need for computation-

intensive numerical methods 

• Express derivates as differences, and obtain finite 

difference formulations 

• Solve steady one- or two-dimensional conduction 

problems numerically using the finite difference method 

• Solve transient one- or two-dimensional conduction 

problems using the finite difference method 
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WHY NUMERICAL METHODS? 

In Chapter 2, we solved various heat 

conduction problems in various 

geometries in a systematic but highly 

mathematical manner by  

(1) deriving the governing differential 

equation by performing an energy 

balance on a differential volume 

element,  

(2) expressing the boundary 

conditions in the proper mathematical 

form, and  

(3) solving the differential equation 

and applying the boundary conditions 

to determine the integration 

constants. 
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1 Limitations 

Analytical solution methods are limited to 

highly simplified problems in simple 

geometries.  

The geometry must be such that its entire 

surface can be described mathematically 

in a coordinate system by setting the 

variables equal to constants.  

That is, it must fit into a coordinate system 

perfectly with nothing sticking out or in. 

Even in simple geometries, heat transfer 

problems cannot be solved analytically if 

the thermal conditions are not sufficiently 

simple. 

Analytical solutions are limited to problems 

that are simple or can be simplified with 

reasonable approximations. 
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2 Better Modeling 

When attempting to get an analytical solution 

to a physical problem, there is always the 

tendency to oversimplify the problem to make 

the mathematical model sufficiently simple to 

warrant an analytical solution.  

Therefore, it is common practice to ignore any 

effects that cause mathematical complications 

such as nonlinearities in the differential 

equation or the boundary conditions 

(nonlinearities such as temperature 

dependence of thermal conductivity and the 

radiation boundary conditions). 

A mathematical model intended for a numerical 

solution is likely to represent the actual 

problem better.  

The numerical solution of engineering 

problems has now become the norm rather 

than the exception even when analytical 

solutions are available. 
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3 Flexibility 

Engineering problems often require extensive parametric studies 

to understand the influence of some variables on the solution in 

order to choose the right set of variables and to answer some 

“what-if” questions.  

This is an iterative process that is extremely tedious and time-

consuming if done by hand.  

Computers and numerical methods are ideally suited for such 

calculations, and a wide range of related problems can be solved 

by minor modifications in the code or input variables.  

Today it is almost unthinkable to perform any significant 

optimization studies in engineering without the power and flexibility 

of computers and numerical methods. 
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4 Complications 

Some problems can be solved analytically, 

but the solution procedure is so complex and 

the resulting solution expressions so 

complicated that it is not worth all that effort.  

With the exception of steady one-dimensional 

or transient lumped system problems, all heat 

conduction problems result in partial 

differential equations.  

Solving such equations usually requires 

mathematical sophistication beyond that 

acquired at the undergraduate level, such as 

orthogonality, eigenvalues, Fourier and 

Laplace transforms, Bessel and Legendre 

functions, and infinite series.  

In such cases, the evaluation of the solution, 

which often involves double or triple 

summations of infinite series at a specified 

point, is a challenge in itself.  
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5 Human Nature Analytical solutions are necessary 

because insight to the physical 

phenomena and engineering wisdom 

is gained primarily through analysis.  

The “feel” that engineers develop 

during the analysis of simple but 

fundamental problems serves as an 

invaluable tool when interpreting a 

huge pile of results obtained from a 

computer when solving a complex 

problem.  

A simple analysis by hand for a 

limiting case can be used to check if 

the results are in the proper range. 

In this chapter, you will learn how to 

formulate and solve heat transfer 

problems numerically using one or 

more approaches. 
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FINITE DIFFERENCE FORMULATION 

OF DIFFERENTIAL EQUATIONS 

The numerical methods for solving differential 

equations are based on replacing the 

differential equations by algebraic equations.  

In the case of the popular finite difference 

method, this is done by replacing the 

derivatives by differences.  

Below we demonstrate this with both first- and 

second-order derivatives. 

Reasonably accurate results can be 

obtained by replacing differential quantities 

by sufficiently small differences 

AN EXAMPLE 
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finite difference 

form of the first 

derivative 

Taylor series expansion of the function f 

about the point x, 

The smaller the x, the smaller 

the error, and thus the more 

accurate the approximation. 
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Consider steady one-dimensional heat conduction in a plane wall of thickness L 

with heat generation. 

Finite difference representation 

of the second derivative at a 

general internal node m. 

no heat generation 



12 

Finite difference formulation for steady two-

dimensional heat conduction in a region with 

heat generation and constant thermal 

conductivity in rectangular coordinates 
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ONE-DIMENSIONAL STEADY HEAT 

CONDUCTION 

In this section we develop the finite difference 

formulation of heat conduction in a plane wall 

using the energy balance approach and 

discuss how to solve the resulting equations.  

The energy balance method is based on 

subdividing the medium into a sufficient 

number of volume elements and then 

applying an energy balance on each element. 
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This equation is applicable to each of the 

M - 1 interior nodes, and its application 

gives M - 1 equations for the determination 

of temperatures at M + 1 nodes.  

The two additional equations needed to 

solve for the M + 1 unknown nodal 

temperatures are obtained by applying the 

energy balance on the two elements at the 

boundaries (unless, of course, the  

boundary temperatures are specified). 
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Boundary Conditions 

Boundary conditions most commonly encountered in practice are the 

specified temperature, specified heat flux, convection, and radiation 

boundary conditions, and here we develop the finite difference formulations 

for them for the case of steady one-dimensional heat conduction in a plane 

wall of thickness L as an example.  

The node number at the left surface at x = 0 is 0, and at the right surface at 

x = L it is M. Note that the width of the volume element for either boundary 

node is x/2. 

Specified temperature boundary condition 
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When other boundary conditions such as the specified heat flux, convection, 

radiation, or combined convection and radiation conditions are specified at a 

boundary, the finite difference equation for the node at that boundary is obtained 

by writing an energy balance on the volume element at that boundary. 

The finite difference form of various 

boundary conditions at the left boundary: 
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Schematic for 

the finite 

difference 

formulation of 

the interface 

boundary 

condition for two 

mediums A and 

B that are in 

perfect thermal 

contact. 
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Treating Insulated Boundary Nodes as Interior Nodes: 

The Mirror Image Concept 

The mirror image approach can also be 

used for problems that possess thermal 

symmetry by replacing the plane of 

symmetry by a mirror.  

Alternately, we can replace the plane of 

symmetry by insulation and consider 

only half of the medium in the solution.  

The solution in the other half of the 

medium is simply the mirror image of the 

solution obtained. 
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The finite difference formulation of 

steady heat conduction problems 

usually results in a system of N 

algebraic equations in N unknown 

nodal temperatures that need to be 

solved simultaneously. 

There are numerous systematic 

approaches available in the literature, 

and they are broadly classified as 

direct and iterative methods.  

The direct methods are based on a 

fixed number of well-defined steps that 

result in the solution in a systematic 

manner.  

The iterative methods are based on an 

initial guess for the solution that is 

refined by iteration until a specified 

convergence criterion is satisfied. 
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One of the simplest iterative methods is the Gauss-Seidel iteration. 
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TWO-DIMENSIONAL STEADY HEAT 

CONDUCTION 

Sometimes we need to consider heat transfer 

in other directions as well when the variation 

of temperature in other directions is 

significant. 

We consider the numerical formulation and 

solution of two-dimensional steady heat 

conduction in rectangular coordinates using 

the finite difference method. 
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no heat 

generation 

For square mesh: 
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Boundary Nodes 

The region is partitioned between the 

nodes by forming volume elements 

around the nodes, and an energy 

balance is written for each boundary 

node. 

An energy balance on a volume 

element is 

We assume, for convenience in 

formulation, all heat transfer to be into the 

volume element from all surfaces except 

for specified heat flux, whose direction is 

already specified. 
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Irregular Boundaries 

Many geometries encountered in practice 

such as turbine blades or engine blocks do 

not have simple shapes, and it is difficult to 

fill such geometries having irregular 

boundaries with simple volume elements. 

A practical way of dealing with such 

geometries is to replace the irregular 

geometry by a series of simple volume 

elements. 

This simple approach is often satisfactory 

for practical purposes, especially when the 

nodes are closely spaced near the 

boundary.  

More sophisticated approaches are 

available for handling irregular boundaries, 

and they are commonly incorporated into 

the commercial software packages. 
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TRANSIENT HEAT CONDUCTION 

The finite difference solution of transient 

problems requires discretization in time in 

addition to discretization in space.  

This is done by selecting a suitable time step 

t and solving for the unknown nodal 

temperatures repeatedly for each t until the 

solution at the desired time is obtained. 

In transient problems, the superscript i is used 

as the index or counter of time steps, with i = 0 

corresponding to the specified initial condition. 
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Explicit method: If temperatures at the previous 

time step i is used.  

Implicit method: If temperatures at the new time 

step i + 1 is used.  
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Transient Heat Conduction in a Plane Wall 

mesh Fourier number 
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The temperature of an interior node at 

the new time step is simply the average 

of the temperatures of its neighboring 

nodes at the previous time step. 

No heat generation and  = 0.5 
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Stability Criterion for Explicit Method: Limitation on t 

The explicit method is easy to use, but it suffers 

from an undesirable feature that severely restricts 

its utility: the explicit method is not unconditionally 

stable, and the largest permissible value of the time 

step t is limited by the stability criterion.  

If the time step t is not sufficiently small, the 

solutions obtained by the explicit method may 

oscillate wildly and diverge from the actual solution.  

To avoid such divergent oscillations in nodal 

temperatures, the value of t must be maintained 

below a certain upper limit established by the 

stability criterion. 

Example 
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The implicit method is 

unconditionally stable, and thus we 

can use any time step we please 

with that method (of course, the 

smaller the time step, the better the 

accuracy of the solution).  

The disadvantage of the implicit 

method is that it results in a set of 

equations that must be solved 

simultaneously for each time step.  

Both methods are used in practice. 
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Two-Dimensional Transient Heat Conduction 
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Stability criterion 

Explicit 

formulation  
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Interactive SS-T-CONDUCT Software 

The SS-T-CONDUCT (Steady State and Transient Heat 

Conduction) software was developed by Ghajar and his 

co-workers and is available from the online learning 

center (www.mhhe.com/cengel) to the instructors and 

students. 

The software is user-friendly and can be used to solve 

many of the one- and two-dimensional heat conduction 

problems with uniform energy generation in rectangular 

geometries discussed in this chapter.  

For transient problems the explicit or the implicit solution 

method could be used.  
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